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INTRODUCTION

A program of experiments is described mainly on secondary particle spectra
to test scaling hypotheses derived from the multiperipheral model. It is
assumed that diffraction dissociation and multiperipheral processes are
distinct effects, and the consequences of this for the scaling laws are ex-
plained. Feynman’s analogy linking multiple production to the statistical
mechanical distribution functions of a gas is outlined, and based on this
analogy it is suggested that one looks for a correlation length in the two
particle spectrum of secondaries.

High energy scattering cross-sections of pions and protons show a pre-
ponderance of multiple production processes. For example, the mean multi-
plicity of charged secondaries is about 4 for 30 GeV p-p interactions, and
cosmic ray data suggest a mean multiplicity of order 10 at much higher
Editor’s footnote v
This previously unpublished paper (Cornell preprint CLNS-131, 1970) is referred to at various

places in these proceedings and is therefore included for its relevance to current developments
in the field.
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energies.'!! Multiple production will be & dominant effect at the NAL
accelerator and CERN storage rings, and there is currently much interest
n developing an experimental programme to study it.

Actually, multiple production is already dominant at the energies of the
present Brookhaven and CERN accelerators, but experimental studies of it
have been sporadic and always subordinate to the study of elastic and quasi-
elastic cross-sections.?” A major problem preventing more systematic study
of inelastic events has been the question of what variables to observe n
highly multiple events. A programme to measure the complete differential
cross-sections for a process with, for example, five secondary particles is
prohibitive in both time and expense; one must select particular aspects of
the cross section to measure.

In the case of elastic or quast-elastic scattering, one must also be selective
in any given experiment. One looks at a limited range of incident energy and
scattering angle, and one selects particular final states. Usually the choice is
dictated by a desire to test a particular theoretical model. a Regge pole fit,
an optical model calculation, etc, However, as the total number of experi-
ments becomes large, one collects a reservoir of data on elastic and quasi-
elastic scattering covering most of the range of energies, angles and final
states accessible to experiment ; that is the total range covered by all data from
all experiments is more limited by experimental than by theoretical con-
siderations. The importance of this is that a future theory of strong interactions
is likely to find its best test in different ranges of energy, angle, etc., than any
particular model now under consideration so one would prefer not to have
the range of data collected in the sum total of high energy experiments
limited by currently popular model theories.

It is out of the question to use the same approach in experiments on multiple
production; because of the number of variables involved even the sum tota]
of all multiple production experiments will provide only a small fraction of
the data that is experimentally accessible. Therefore it is important to think
about the choice of experiments to be performed, in particular to try to maxi-
mize the possibility that the experimental data collected will remain useful
despite continuing changes in theoretical fashions.

The purpose of this paper is to propose an experimental programme for
studying multiple production, which takes into account the problems men-
tioned above. The programme is a set of specific and feasible experiments,
whose immediate aim is to test some currently popular theoretical models.3
However it will be argued that the results of these experiments will help to
characterize the general features of multiple production independently of
any model. As a basis for setting up the experiments and predicting their
outcome, it will be supposed that there are three types of multiple production
processes, namely : (a) multiperipheral events, (b) diffraction and diffraction



10. SOME EXPERIMENTS ON MULTIPLE PRODUCTION 703

dissociation, and (c) multi-Regge exchange events.(¥ We shall give a simple
but qualitative definition for each of the three types of processes; these
definitions will not involve spectfic models requiring detailed_(falculati(_)n and
parameter fits in order to compare with experimental data. Lhe experiments
to be proposed will test whether multiple production processes can be sep-
arated into these three categories.

Before discussing these ideas in detail, some general comments will be
made about the purposes for doing high energy experiments.

There does not exist a real theory of strong interactions at present, and the
models of high energy processes one studies at present are no substitute for
such a theory. It is the ultimate aim of experiment and theory to try to obtain
a real theory, so it is worth considering how particular experiments will affect
the finding and testing of such a theory. First, though, one must say what one
means by a “real theory of strong interactions”. My view is that there are
four essential requirements for a real theory :

A. Tt must be derived from a few fundamental principles comprehensible
to both experimentalists and theorists.

B. Any free parameters in the theory must appear explicitly and obviously
as a consequence of the fundamental principles (just as s and h are
explicit and obvious in ordinary quantum mechanics, and ¢ is explicit
and obvious in relativity) and there should be no arbitrary functions
in the theory. . o

C. The fundamental principles should imply a set of equations containing
the fundamental parameters whose solution will describe all aspects
of strong interactions including the complete S matrix (even the S
matrix for n particles going to m particles for any 7 and m) anq all
matrix elements of the weak and electromagnetic currents. For a given
set of values of the parameters the equations should have one and only
one solution ; if this cannot be proven there should at least be plausible
physical arguments suggesting it.

D. One should be able to determine qualitative features Qf the solution
of the equations from qualitative features of the equations, or better
from qualitative statements of the fundamental principles without
using the equations at all. o

One has to be an idcalist to believe that a theory will be found satisfying these
four requirements. So the author is prepared to be flexible but would be very
sceptical about any proposed theory that seriously violates any of these
requirements.

At present there are two principles (in addition to the principles of quantum
mechanics) which one hopes will be a part of a real theory When it is found,
namely, locality and Gell-Mann’s current commutators. Model-independent
tests of these principles are of vital importance. Locality can be tested, at



704 K. G. WILSON

least partially, by checking forward dispersion relations and rigorous bounds
on high energy cross-sections. However, these tests do not mnvolve detailed
experiments on multiple production processes, so they will not be discussed
further here.!” One has some ideas on what the fundamental parameters of
strong interactions are, namely, the strengths of the SU (3) x SU3) breaking
terms in the Lagrangian are probably fundamental parameters. It is difficult
to learn much about these parameters in a model-independent way from
high energy cross-sections. We have not even a glimmering of an idea what
the equations of strong interactions would be, let alone how to obtain
qualitatively or quantitatively the solution of these equations.

It is likely that the equations of strong interactions will be as complicated
as the many-body equations of non-relativistic quantum mechanics or
classical physics. In consequence it will probably be very difficult to get
detailed quantitative solutions of them; the best one can hope for is to
determine the basic qualitative features of their solution. Because of this 1
think the experimental programme on multiple production should be aimed
at finding clear-cut qualitative features of these processes rather than trying
to have precise numerical data on particular processes just to test a particular
model. Also, I think it is more important to understand processes with large
Cross-sections than to study processes with small cross-sections. For example,
the elastic cross-sections at large angles where the cross-sections are ~ {0~ 32
or less may well be useless for either finding or testing a real theory because
there can be very many competing small effects which would become im-
portant in calculating a cross section of this size. Where a cross-section 18
large there is more hope that a few qualitative features of the theory will be
sufficient to determine the behaviour of the cross-section.

There are already known a number of simple properties of high energy
cross sections which are good examples of the ““clear-cut qualitative features”
that one should look for. We know that (at presently accessible large energics)
total cross-sections are constant (at least roughly). Elastic or quasi-elastic
cross-sections requiring exchange of internal quantum numbers (isospin,
strangeness, etc.) fall with s roughly like s~ ') where o depends only on what
is exchanged and not the particular process. In multiple production pro-
cesses, we know that the transverse momentum of secondaries is bounded.
having a mean value around 300 MeV independent of the incident energies.
The probability of finding a secondary with transverse momentum p, much
larger than 300 MeV falls rapidly as p, increases, perhaps exponentially. As
New energy ranges open up it is important to check that these results continue
to hold.

Now the three types of high energy events discussed in this paper will be
defined. It will be assumed that total cross-sections are strictly constant at
high energy (ie. they do not increase with encrgy, even logarithmically).
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First consider diffraction and diffraction dissociation'<6) T'?ese car zihecp;;z
cesses that would be described by single Pomeron exchange. ! qnel catg :Satrt er-
these processes by Regge theory. They include elastic and quasi-erastic ‘ecsses in
ing where no quantum numbers are exchanged. They also inctude pr]oca ticles
which the incident or target particle (or both) fragment nto sfeveri’*p o ok
where the several particles are not just the decay products oL.an oo

. . ffraction or diffraction
etc.” It is assumed that the cross-sections for diffr2

i iati :sh energy. By a “‘fixed
dissociation to a fixed final state are constant at high © )
N RN pamcle have fixed mo-

energy, while the frag-
menta which are fixed
language) and fixed

final state”, I mean that the fragments of the target
menta in the lab system independent of the incident
ments of the incident particle have longitudinal mo
fractions of the incident energy (fixed x in the Feynman
transverse momenta.
The assumption that total cross-sections are con stant p_udt i at:;tronfrtri;
striction on the nature of diffraction dissociation. .Constl‘ f;rdisseogaﬁon
cross-section o, (diff) for producing n secondaries by d%ﬂra;:lo (diff) must be
at high energies. Because of the constant total cross-sectior =nnl¢ diff) > 0 as
finite. Since o, 05, etc. are fixed with energy, this means Zl,,( s
n — oc. This means that diffraction dissociation will £° pre{ Omm]ti liz:it
low multiplicity intermediate states. In other words the mean mu *p Y
in diffraction dissociation must be constant independent o ?nergtjg Iféthe
average multiplicity of all inelastic events increases ind.e ﬁmte y WL Chetey
there must be other processes besides diffraction diSSOCl?ﬂZr-l' al momentum
By the same argument the probability that a pion of lon g.ltu %nt. 1 to a final
k, is emitted as a fragment of the target in diffraction dlsSOCIE'ISO be Drecise
state of fixed multiplicity must decrease rapidly as &, lr}creasel ’ over kp must
the cross-section must fall faster than 1/k_, since the 1 r%t(;,gra multi Zlicities
converge.”® To produce pions of large k, is possible only if ar'%i low If cons
are allowed so that large k, pions appear simultafleouSly h t la eznrium_
rather than in separate events. But by the previous argiment 1arg
plicities are unimportant for diffraction dissociation. ction dissociation
So our picture of diffraction dissociation is that dlffrat that the final
cross-sections are constant with energy for fixed final sta eg,n antly of low
states resulting from diffraction dissociation are pred?foliv eneg either
multiplicity, and that final state particles will mostly b€ © tail of evge);ts not
in the lab system or the projectile system. There will be 2 tail is neeligible
satisfying these criteria, but it will be assumed that this tail is neglig
compared to multiperipheral cross-sections. ical double Regge
Secondly, consider double Regge pole exchange. A typ + 0 where the
pole exchange process is shown in Fig. 1. p +p =P tpPTp
p° is at rest in the centre-of-mass system, with pions €X¢
* This is strictly true only for the median multiplicity.

hanged between the
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F1G. 1. Double Regge pole exchange graph for process p + P—=p+p+n" + n . Theexchanges
can be 7 exchange or any combination of Pomeron and p exchange. The invariants s, and s,
are the invariant mass squared for the Regge poles I and 11 respectively.

p° and each proton. Double Regge pole exchange is expected to apply when
the particles emitted at the intermediate vertex are highly relativistic with
respect to both incident particles ; in other words when the particle s across
each Regge pole is large (s, and s, of Fig. 2 must be large). For any exchange
other than double Pomeron exchange these double exchanges should fall
rapidly with energy and hence be a negligible part of the total cross-section.
If there is double Pomeron exchange these processes are important, and
wreck the picture of this paper because with double Pomeron exchange one
has a process with a fixed number of particles in the final state where secon-
daries can come out with any k.. However, because diffraction may well not
be an exchange process at all, and because multiple Pomeron exchange
causes theoretical difficulties.® it will be assumed here that double Pomeron
exchange is either non-existent or very small. One of the experiments described
later is to test this assumption.
Finally, consider multiperipheral processes. The multiperipheral model
of Amati, Fubini, and Stanghellini'® s at first sight a special model based
-on multiple pion exchanges which one would not want to take very seriously.
But as Amati et al. found, the multiperipheral model exhibits simple scaling
laws for inelastic processes at high energies''” (including the scaling law
for the single particle spectrum rediscovered seven years later by Feynman'®).
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These scaling laws were shown by Amati et al. to be independent of the
details of the model, such as the values of coupling constants; one can also
have other particle exchanges besides pions. By multiperipheral processes
I mean any processes satisfying the scaling laws predicted from the multi-
peripheral model. The author has stated elsewhere the rules for constructing

such scaling laws."” The best way to introduce these scaling laws is, I think,

Ny
f‘ 2 ¢ 300 Mev
e Ln(S//Jq/Lz) - |
CZ gi

F1G. 2. Sketch of the Feynman gas showing walls at {, and {, and the bound on |r |. There can
be some leakage beyond the walls, as noted in the text, #, and p, are the incident particle masses.

to use an analogy invented by Feynman.!'V This analogy links multiparticle
production cross-sections to the multiparticle distribution functions of a
classical gas. with the total cross-section becoming the partition function
of a gas. This analogy is very much on Feynman’s mind when he discusses
his parton model of high energy collisions, although it is not discussed in
his papers.

In the Feynman gas analogy, a secondary particle with momentum k
and energy k, corresponds to a gas particle at position r; the components
of r are

x =k, (1)
y=k, (2)
z = Inf(k, + ko)/m,] (3

and

m, = (m® + k2 + k2)* (4)
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Here m is the mass of the secondary and k_ and k, are the transverse com-
ponents of the momentum. The variable z is Feynman’s “rapidity”® and
is used because a Lorentz transformation in the z direction on k is equivalent
to a translation of z.

It will be assumed that multiple production cross-sections are defined
using the invariant form of phase space d>k/k, for each secondary. When one
changes variables from k to r, invariant phase space becomes just d*r. We
also need the form of the energy-momentum conservation J-functions
written in terms of the r variables. One notes that

ko + k, =m e (5)
2
m
ko =k, = ——=me " (6)
ko + k,
Let s; and s, be the r variables of the incident particles while r,. .. ..r, are
the coordinates of the secondaries. Let the incident momenta be p, and p,.
the secondary momenta k, ... k,. Let p=p, + p, — k, — ... — k,; then
the energy-momentum conservation § functions are
8(py) 63(p) = 28(py + p.) o(py — p.) 6%(p,) (7)
One now has
P+ =Ppo+ p.= e + pye —my, & — . —m, e (8)
Po=Do— P, =pe e P —mie — . —m, e (9)
PL =81, +S; =Xy — .. — X (10)

where (, is the z component of s, and {, the z component of s, ; , and u,
are the masses of the incoming particles (which have no transverse momentum
SO fiy = fiy . H, = p, ). The vector p, contains the transverse components

(ps. py) of p.
The total cross-section, written in r variable form. is a function

c 1
or(s;,8) = ) p Jd3r1 . vJ‘d3rn 20(p ) o(p_) 6*(p))
n=2 ft-
X 0 (F...,T,8.8,) (11)

where o,(r,....1,.8,.8,) is the invariant cross-section'? for producing n
secondaries with r variables r, . . . r,. One must also sum over particle species
(n*,n% n~, K*, etc) but this will not be written explicitly.

In the Feynman analogy o,(s,, s,), with s, and s, fixed, is a partition
function of a gas, and the functions ¢,(r,,...,r,.5,,s,) are the n-particle
distribution functions for the gas. The gas has some strange features, namely
the restriction on the positions of particles given by the §-functions and the
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fact that transverse coordinates x and y are measured in GeV ; these features
will not upsect the usefulness of the analogy.

The most important effect of the d-functions is to bound the longitudinal
positions z; of the gas particles. Assume the invariant s = (p, + p,)? is large,
and that one is in the lab system. Then one finds

o= Infs/pyp,] (12)

(=0 (13)
The ¢ function for p, puts an upper bound on the z;, namely they cannot be
much larger than (, (z; can be larger than {, if m;, 1s less than p,. but the
maximum value of z; — {; is In (1,/m;) where m;, is the mass of the secondary.
and this quantity is a constant independent of s). Similarly, the ¢ function
for p_ puts a lower bound on z;, namely it cannot be much less than {, = 0
(z; cannot be less than —In (u,/m,). Hence the quantities {; and (, define
boundaries in the z direction for the gas; one can imagine the gas being
confined between walls at {; and {,. The separation of the walls is propor-
tional to In s and goes to infinity as s — cc. The wall at {, will be called the
“incident particle wall”’; the wall at {, is the “‘target wall”. The Feynman
gas 1s illustrated in Fig. 2.

In the transverse direction there are also kinematic bounds but these are
not noticeable except near the walls at {, and (,; away from these walls the
dynamic property of bounded transverse momenta keeps the gas largely
confined to a tube of radius ~ 300 MeV.

In a real gas with over 10?3 particles one does not even think of measuring
the distribution functions for those 10?° particles. Instead onc measures
thermodynamic (statistical) average properties of the gas, such as the density.
A density p(r) is readily defined for the Feynman gas; to be precise it is a
function p(r, s;, s,). The density—density correlation function is another
statistical average which is readily defined for the Feynman gas; it is a
function g{r,, r,, §,, $,). In real gases a knowledge of the density and density
correlation functions (as a function of temperature and pressure, say)
determines all the properties of the gas of practical interest. By analogy a
knowledge of the density and density—density correlations of the Feynman
gas should be invaluable for characterizing its properties.

The density p(r, s;,s,) is simply the invariant single particle spectrum
for the scattering problem. The definition of the density p is that p(r, s, s,) d°r
is the average number of particles to be found in the volume d*r. From the
partition function of eqn (11) it follows that p is

1 z 1 .
(r.s{,8,) = d3r ...Jd3rn_
plr-s1.52) orl(sy, $5) n;z (n — 1! J ' :

X 28(p,) 8(p ) 3B o0 Tre ke sisy)  (14)
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This is just the probability density per collision to produce a secondary
with position variable r [ie. momentum k given by eqns (1)-@)]. If one
converts from position variables to momentum variables, p becomes a
function pik, p,, p,). Since dr is d’k/k,, plk, p,, p,) d*k/k, is the probability
per collision to produce a secondary of momentum k in a range d3k. This 0
is an inclusive quantity in Feynman’s language; all events are included
which have a secondary in this range. In practice one defines separate
densities for each particle species, 7", °, n~, K7, etc. I have normalized
the spectrum to the total cross-section instead of the total inelastic cross-
section as is sometimes done; the question of normalization will be recon-
sidered later.

To define the two particle correlation function one first defines a joint
probability density P(r.r',s,.s,) for finding one particle at r, another at r’.
P is given by

, e , ,
P(l‘,r,sl, Sz) = OT“T“S;} n;?‘ (n -——‘5—' Jd Fy.oo. J\d o>
X 20(p.) dp ) O (p) o r.r ky. .. 1, s $,.S5) (15)

If the particles of the gas were uncorrelated the joint probability density
P(r. ', s,. s,) would be a product of two single particle densities. The correla-
tion is defined by subtracting this product from P :

a

ge, ¥, s, 8,) = P(r,r',s,.s,) — pr. s4,8,) p(r', sy, s,). (16)

The most interesting property of the correlation function for a real gas is
the correlation length ¢&. Qualitatively ¢ measures the maximum separation
Ir — r'| for which g(r,r) is appreciably different from zero. Quantitatively ¢
is defined from the expectation that g(r, 1) falls off exponentially in the
separation |r — r'| when this separation is large. One then defines ¢ by the
asymptotic form

/¢ (17)

gr.x) ~ exp ! —|r — v

apart from a power of |r — r/|.

By analogy with the real gas one should define a correlation length ¢
for the Feynman gas. This makes sense only at high energies where large
values of [r — r'| are possible and one might be able to see experimentally
the function ¢(r, r') dropping to zero as Ir — r'| increases. Consider, to be
specific, the n*—n~ correlation function: let r refer to the n', 1 to the n~
and let k and k' be the corresponding momenta. Let s,  be the invariant
mass of the 77 ~n" pair; in terms of the r variables, one has

S¢- =2m7 + 2m;m| cosh(z — 2’y — 2k, - k' (18)
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(m, is the 7 mass). The “perpendicular masses” m, and m’ are typically
approximately equal to k|, and k' , all being of order 300 MeV. Sofor s, _ tobe
large, z — 2z’ must be large. One expects strong correlation between the n*
and 7~ whens, ~ m? (m_1is the p mass). The best one can hope for 1s that
g(r.r',s,s,) becomes small whens, > mf). To see this fall-off one has to let
z — Z become large. In principle one can also make s, _ large by going to
large transverse momenta, but this means going well out into the tail of trans-
verse momentum distribution. This involves looking at small cross-sections of
the kind one would prefer to avoid."* So what one should look for is a
correlation length in ¢g(r, r’, s,, s,) as a function of the longitudinal variables
z and z’; an experiment to measure this correlation function is included in
the programme.

The Feynman gas analogy makes clear, I think, that any programme to
study multiple production should include experiments on the single particle
spectrum and two-particle correlation functions.

To motivate the general predictions of the multiperipheral model, imagine
that the particles of the Feynman gas interact only through short range
forces. In particular, assume the range of the forces stays fixed as s increases.
so that for large s the range of forces is small compared to the separation
of the walls of the gas. I shall not give a precise definition for the idea of
“short range forces”’, as it is hard to formulate as a mathematical property
of the distribution functions o,. Further discussion of this problem is given
in the Appendix. The hypothesis suggests some properties of the density and
correlation functions for large s. The part of the gas that is well away from
the walls has no direct interactions with the walls, in fact being many inter-
action lengths away from them. One would then expect the properties of
the gas in this region to be independent of the precise location of the walls.
This means p(r,s,.s,) should be independent of s, and s, when {, — z
and z — (, are large: p(r,s;,s,) — pr) for {; —z and z — {, > oc. By
Lorentz invariance in the collision plane, which is translational invariance
along the z axis for the Feynman gas, p(r) cannot depend on z so p(r) depends
only on x and y, i.e. only on k,.'¥ The part of the gas near the incident
particle wall (z = {,) is many interaction lengths away from the target wall;
for this range of z, p should depend on s, but not on s, : p(r,s;.s,) — p(r.s,)
when z — {, —» oo holding {; — z fixed. By translational invariance p(r, s,)
can depend only on k, and z — {,. Translated into momentum variables,
this means that p(k, p,, p,) depends only on k, and k/p,, (Feynman’s x
variable'®) when p;, — oo with x held fixed. These are just the scaling
predictions of Amati, Fubini, Stanghellini,"’® Feynman,'® and Yang et al.®
for the single particle spectrum.

Similarly, the correlation function ¢(r, ', s,, s,) should be independent of
s, when z, z', and {, all go to oo, and in this limit should depend on z, 2/, and
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{y only in terms of the differences z — 2’ and z' — {;- So if one holds k. &/,
and z' — {, fixed (i.e. fixed inelasticity x’ for the particle with momentum ¥,
the correlation function should depend only on z — 7z and not on {y (re
not on s). Hence the correlation length ¢ should also be independent of s,
for fixed k, k', and z/ — ¢ 1~ More generally, the correlation length cannot
become large as s increases no matter what values one uses for k. k|, or Z,
since a dependence on s is possible onlyifg(r,r’,s,, s,) depends simultaneously
ons, ands,, and for sufficiently large s this is excluded by the short range force
picture. (Once one has a function independent of §, Or s,, one can write a
scaling law for that function from which one shows that ¢ 1s bounded)

If the density of the Feynman gas is independent of z except near the walls,
the mean number 7 of particles in the Feynman gasisoforder {; — ¢, ~ Ins.
There can be large fluctuations in the density over small ranges of z, but
these are unlikely to be coherent over the entire volume of the gas so fluctua-
tions in the number n of particles about 7 should be small relative to 7,
presumably of order (7)*."® In particular it is unlikely that n will be 2 or 3
or 4 when s is sufficiently large. But this is in clear contradiction with the
assumption that diffractive cross-sections are constant as s — co. This
provides the motivation for trying to distinguish diffractive processes from
multiperipheral processes; we imagine that it is only the multiperipheral
part of the inelastic cross-sections which act like the distribution functions
of a gas with short range forces. It would then only be the multiperipheral
cross-sections which produce a multiplicity proportional to Ins on the
average, with fluctuations of order [In s]*. Since diffractive cross-sections
are mostly of low multiplicity, while the multiplicity of multiperipheral
processes increases indefinitely with s, they should be clearly separated at
sufficiently large s. In particular, for very large s there should be values of
the multiplicity n with 1 < n < In s for which both the diffractive and multi-
peripheral cross-sections should be very small. One of the experiments is
designed to test whether multiperipheral processes can be distinguished by
their multiplicity from diffractive processes.

We must now re-examine the problem of how to normalize the single
particle spectrum. This normalization is important due to the definition of
the two particle correlation function g(r,r',s,,s,). In particular, whether
g(r,¥'’,s,.5,) goes to zero as |r — r'| becomes large depends on how p(r, s,,8,)
and P(r,r', s, s,) are normalized [seeeqn (16)]. If it is only the multiperipheral
part of the inelastic cross-sections which behave like distribution functions
of a gas with short range forces then it is desirable to define a partition function
which is a sum only over muitiperipheral cross-sections and to define the
density and correlation functions using this partition function. What this
means is that both P and p should be normalized using g, the multiperipheral
part of the cross-section, rather than either or or the total inelastic cross-
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section. Let us denote by puy(r.s;,s,) and g,(r,r’.s;,s,) the density and
correlation function for the multiperipheral cross-sections normalized to
oy That is, py(r, s, s,) d°r is the probability per multiperipheral interaction
that a secondary is found in a multiperipheral interaction with position
variable r in a range d3r. It will now be assumed that it is p,(r. s, s,) and
gulr, ¥, s..s,) (rather than p(r,s;.s,) and g(r.r,s,.s,) which satisfy the
Amati- Fubini—Stanghellini scaling laws.

One now has the problem of determining whether p and g will also satisfy
scaling laws or whether one must measure p,, and g,, separately. The answer
is that some scaling laws apply also to p and g, some do not. For example,
the scaling law pyr. s,,8,) = pulr,s,) when {; and z — cc holds also for p.
To see this one defines py(r.s,.s,) to be the single particle spectrum for
diffractive events, normalized to the total diffractive cross-section g, At
high energies we assume the total cross-section oy is approximately equal
to o, + o, then
Om

o
plr. sy, 8,) = —— & ppir, 8,8;) + ————— PM(T $1.S5) (19
Op + Oy op+ 0

One further assumption : assume that o, approaches a constant as s — o
(ie. does not go to zero). Now it is easily seen that pp(r,s,.s,) becomes
independent of s, when z and {, —» o« due to diffractive cross-sections
individually being constant for large s. Since ¢, and oy, are constants for
large s, the combined spectrum p is also independent of s,, in the hmit z
and {; = .

An example of a result holding for g,(r, r". 8. s,) which does not hold for
the full correlation function g(r,r’,s,,s,) is the result that gy(r.1'.s,,s,) >0
when |z — z'| > & where ¢ is a fixed correlation length. Suppose for example
that {, is very large, z ~ {, and z lies in the range 0 < z < {, (sothat {; — z
and z — {, are both >1). Then there are no diffractive events which give
secondaries of position r; as a result the correlation function g(r.r'.s;.s,)
can be written

, O Opm
g(r,r'.sy.8;) = —‘_PM(I' r.8;,8;) — —— pulr. 5. 8,)
oy + 0p om + Op
0rPu(r.81.85) + oppp(r'.s;,8,) Onm ,
i - = gulr. ¥, 8,.8,)
Oy + Op oy + 0p
om0 p

- ———_SEPM 1,5, 8P pr', 81.82) — pulr’. sy s2)] (20)
Op,

It follows from this formula that the full correlation function g(r.r". s, s,)
will not be zero for |z — /| large unless the diffractive spectrum p, is equal

2A
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“to the multiperipheral spectrum p,,. This is impossible for all v because
Pulr’. sy, 8,) is constant when {, €2 < {, while pyr, $1.§,) is zero in this
range.

The problem of separating multiperipheral and diffractive events will be
discussed in connection with individual experiments.

To conclude the discussion of multiperipheral events there are two
miscellaneous observations to be made. F irst, there has always been some
reluctance to measure secondary pion spectra on the grounds that most of
them are probably decay products of p’s, A;’s, ete., and so one would prefer
to know the spectra of p’s and Ay’s. However, the scaling laws of Amati,
Fubini, and Stanghellini for pion spectra are equally valid whether or not
the 7’s are mostly decay products.!® The intuitive reason for this is that the
decay process is itself a short range effect in r-space [for example a 7" and
7~ with an invariant mass of order m, cannot have a large separation in
z, from eqn (18)]. Hence if the cross-sections for producing p’s and other
resonances obey the multiperipheral scaling laws, then so will the cross-
sections for the n’s resulting from p decays. This means that to test the multi-
peripheral scaling laws it is pointless to distinguish 7’s from p decay from
uncorrelated n’s.

The second observation is this. In p-p collisions it is possible for pions
to be emitted backwards in the labh system due to the low mass of the pion.
The minimum z for the pion is —In (m,/m,) where m, is the proton mass
(this was shown earlier). This value for z corresponds to a rather fast backward
pion. It is not easy to find dynamic mechanisms that would produce such fast
backward pions; they are too fast to be decay products of low-lying N*’s.
So there should not be many such pions. By symmetry there cannot be many
pions going much faster than the incident proton either, for such pions
would be going backwards in the rest system of the incident proton. However
a pion having the same velocity as the incident proton and a transverse
momentum of about 300 MeV has only 1 the energy of the incident proton.
Hence the spectrum of pion in p-p collisions should fall rapidly as the
longitudinal momentum k, of the pion increases once k_/E > 1 where E is
the incident proton energy. This is the explanation for the exponential fall-off
in k. seen experimentally for k,/E > 1 in pion spectra in p-p collisions.?”
This exponential tail is useful for experimental purposes, as will be discussed
later. No similar tail is expected for high energy n’s in 7n-p interactions: in
7—p interactions the n spectrum should be reasonably flat up to the kinematic
limit k,/E ~ 1.

Now a specific programme of experiments will be described. They test
the theoretical ideas already described. However, if the predictions are
correct the experiments can be interpreted without making numerical fits
toa particular model ; rather the experiments will define non-trivial properties
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of multiple production which all future models would have to agree with.
The experiments should all be feasible with present-day techniques. I have
tried to define the simplest and most practical experiment to test each
theoretical prediction; I hope that these experiments will not be replaced
by more elaborate “‘improvements” of them. The individual experiments are
not new; what is important is that they form a sensible programme.

EXPERIMENT 1: PARTIAL CROSS SECTIONS AS A FUNCTION OF MULTIPLICITY

In this experiment one considers p—p interactions at fixed but large s.
One measures the partial cross-section o,(s) for producing n charged
secondaries, as a function of n. No distinction is made between n*. n ™, p, P,
etc.: all charged particles are counted, and all neutrals are ignored. What one
is looking for is a dip in a plot of o,.(s) versus n. Namely, at sufficiently high
s the partial cross-section ¢, (s) should first decrease with n as one moves
out of the diffraction dissociation region, and then increase again as n
approaches the mean multiplicity 7 (s) of charged secondaries from multi-
peripheral processes. One expects 7i(s) to be proportional to Ins, so the
larger s is the more pronounced the dip should be.

There is no guarantee that a dip will occur at the energies of NAL or the
CERN ISR, even if the theoretical picture of diffraction dissociation plus
multiperipheralism is correct. So an absence of a dip, while disappointing,
does not disprove the picture. The importance of the experiment is that a
dip, if found, would be clear cut and model independent evidence for the
existence of two separate processes in multiple production.

If one could detect neutrals as easily as charged particles one would
measure o,(s), the partial cross-section for producing n secondaries including
neutrals instead of o, (s). Because the mean number #(s) of all secondaries
in multiperipheral processes is larger than #,(s), the dip is likely to appear
at a lower energy in the function o,(s) than in o,(s). But I believe the charged
multiplicity remains the simplest experiment to do even if large bubble
chambers can see y-rays, and I urge that an experiment on charged multi-
plicities not be held up in hopes of doing a measurement including neutrals.

The next group of experiments concern the single particle spectrum.
For purposes of this discussion I shall write p as a function of &k, k., and E,
where k| is the transverse momentum of the secondary, k, is the longitudinal
momentum in the lab system of the secondary, and F is the incident energy.
Phase space is d3k/ky: p(k,. k,, Eyd3k/k, is the probability per collision
to find a secondary of momentum k in a range d*k. There are separate
spectra for n*, n~, K*, etc.; there are also according to theory separate
spectra pp(k,, k,, E) and pylk, .k, E) for diffractive events and multiperi-
pheral events. The spectrum p,, is normalized to the total multiperipheral
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cross-section o ,,(s) instead of the total cross-section ; p, is normalized to the
total diffractive cross-section. When it is necessary to separate p,, or p,
from p we will discuss how to do it, if possible.

I beg all experimentalists not to plot single particle spectra as angular
distributions. It is k,, not an angle, which has an average valuc around
300 MeV independent of k,; this fact makes plots vs. k, and k, much simpler
to interpret than angular distributions. I personally prefer the use of the lab
variable k, or else the rapidity z to a centre-of-mass variable, since the multi-
peripheral scaling laws look simpler in terms of these variables.

EXPERIMENT 2: BEAM SURVEY FROM A HYDROGEN TARGET

In this experiment one measures the spectrum p(k,. k,. E) of high energy
secondary 7~ mesons from p-p collisions. The measurement is made varying
Eholding k| and k_/E fixed (fixed x in Feynman’s language). The prediction to
be tested is that p(k,, k., E) is independent of E when k, and k_/E are held
fixed. The range of E should be ~30GeV and up; k, should be of order
300 MeV and k,/E ~ % The choice of k, and k, is meant to ensure that one
is in a region where the spectrum is large. The choice of = over other
particles is for simplicity, since all but a few negative secondaries are 7.
A good experiment would be to hold k, fixed, measure the spectrum as a
function of k, and E and try to fit the data to an exponential depending only
on k_/E.

The experiment can also be done in n¥p or n p collisions but in this
case one does not have the exponential behaviour in k, which makes for a
good experiment. On the other hand, one can get to higher values of k. for
the secondary = if the incident particle is a 7. since the limitation k,/E < 1
no longer applies.

There is no need to separate diffractive from multiperipheral contributions
since both are predicted to obey the Amati-Fubini-Stanghellini-Feynman
scaling law.

EXPERIMENT 3: FACTORIZATION IN THE SINGLE PARTICLE SPECTRUM

In this experiment one measures the spectrum p(k , k_, E) for backwards n~
in the lab in both p—p and n—p collisions. The energy E is high and fixed
I suggest holding k, fixed and fitting to an exponential in k,. What one is
testing for is whether these spectra are equal for p—p and 7n-p collisions,
that is whether p(k,, k,, E),, = p(k,, k., E),, According to the picture
described earlier the multiperipheral spectrum p, (k. k,. E) should be the
same for high energy n "p and pp collisions as long as one is looking at low
energy secondaries ; this is because a low energy particle is a particle near the
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target wall in the Feynman gas and cannot tell what particle was incident
at the other wall which is many interaction lengths away. (This prediction is
another general consequence of the multiperipheral model. ') It is not
clear whether or not the diffractive componeiit p{k, k,, Iy should be the same
for m p and p-p collisions. If diffraction is descrlbed by a simple Regge
pole then the factorization property of Regge poles requires that p (k. k,, E)
be the same for m-p and p-p. If diffraction is something else than Regge
exchange then py(k,, k,, E) could very well be different (at least in magnitude,
if not in shape) for n-p and p- p scattering. If this is the case then one will see
a violation of factorization when one performs this experiment. I do not
expect there will be large violations of factorization, so I think it is important
to do this experiment carefully so that one can make accurate comparisons
of np and pp collisions at the same values of k; also the experiment will have
to be done at several incident energies E to see if any violations of factoriza-
tion persist as E increases. One does not have to use incident n’s and p’s
of the same energy ; one might instead use n’s and p’s with the same velocity,
which means the 7 would have 1 of the energy of the proton. I would suggest
a compromise : Let the incident 7’s have § the energy of the incident protons.

There is no way in this experiment to separate p,, from pp; a separate
experiment will be proposed later to test factorization in multiperipheral
processes separately.

This experiment tests whether factorization holds when p has both dif-
fractive and multiperipheral contributions. Even if factorization breaks
down, it is still possible for p,, and p,, separately to factorize; if pp # pu
and if the ratio o,,/0,, is different for np and pp collisions, then p will not
factorize (see eqn (19)).

EXPERIMENT 4: THE dk_/k_Law

In this experiment one measures the spectrum p(k;. k. E) of secondary
n~ in p-p collisions. The energy E is held fixed and should be the highest
energy available. The spectrum is measured as a function of k, holding k,
fixed. As usual k, should be of order 300 MeV, while k_ should be in the inter-
mediate range, say 1 GeV < k, < E/4. What one is testing for is whether

p(k,. k,, E) is independent of k. in the range 1 GeV < k, < E/4. This predic-
t10n is called the “dk,/k,” law because longltudmal phase space has the
form dk_/k_1in this region.

The problem with this experiment is that the prediction that p is inde-
pendent of k, is valid only for secondaries which in the Feynman gas analogy
must be many interaction lengths away from both walls. In experiments 2
and 3 the only requirement is that the walls be separated by many inter-
action lengths. So if “many interaction lengths” turns out to be a distance
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zy, then the bound for s in experiments 2and 3is {, — {, = In (s/pyps) > zq
but the bound for this experiment is In (s/p1115) > 2z, To double In s means
squaring s; for example, if experiments 2 and 3 require s > 30 GeV?, this
experiment requires s > 900 GeV?2! (4; and p, are of order 1 in GeV for
p-p collisions and can be neglected in these units). One is further squeezed
in this experiment because the pions must have z’s considerably less than 5
which means energies «< E/3 instead of energies < E. This latter squeeze can
be avoided by using 7p instead of pp collisions ; if one can get enough incident
pions with more than 1 the beam energy the np-experiment is probably
better.

The prediction is precisely that Pulk,, k., E) is independent of k, in the
intermediate range: but according to the picture of diffraction described
carlier p,(k ,k_ E) is negligible in this range so plk , k, E) should also be
independent of k_ in the intermediate range.

EXPERIMENT 5: SEARCH FOR DoOUBLE POMERON EXCHANGE

In this experiment one measures the cross-section for the specific reaction
P+p—>p+p+n" + 2. Onelooks in particular at =+ 7~ pairs whose
centre of mass is at rest in the centre-of-mass system of the incident particles.
The cross-section is studied as a function of the incident energy E and the
invariant mass squared s’ of the pair. What one is looking for is ( a) the energy
dependence of the reaction, for fixed s’ and (b) whether the p peak broadens
as E increases.

The theory of this experiment is as follows. Double pomeron exchange
(see Fig. 1), if it exists, can only produce | = 0« pairs and cannot produce p’s.
Pomeron exchange with the incident particle plus p exchange with the
target particle can produce p’s. Double Pomeron exchange if it exists should
become the dominant process compared to other exchanges at sufficiently
high energies. There should not be a narrow resonance like the p in the

= 0 channel; if I = 0 pairs become important the p peak in the n* -7~
mass distribution should appear to be broadened due to these pairs. The
cross-section for producing p’s should fall with energy; for example, if p’s
are produced by Pomeron exchange +p exchange. one finds the cross-
section should behave as E %, E being the incident energy. (To be precise the
cross-section is the cross-section for producing n*-n~ pairs with fixed
windows in the centre of mass for the 7* and 7~ and no restrictions on the
final state of the protons.) A naive double Pomeron model predicts a constant
cross-section for 7 -7~ pairs with I = 0; there are enough problems with
double Pomeron exchange!® that I am unwilling to make this or any other
prediction for the I = 0 pair cross-section.

There is no sign of I = 0 production at 30 GeV energies, so it is unlikely
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to overwhelm p production at NAL or CERN energies; at best the [ =0
cross-section might become comparable to the p cross-section.

In summary one looks at the energy dependence of the p cross-section to
see if it falls with E according to a Pomeron + p exchange model or another

exchange model; one looks for a broadening of the p peak to see if there s
double Pomeron exchange.

EXPERIMENT 6: CORRELATION LENGTH EXPERIMENT

In this experiment one measures the two-particle spectrum P(k,, k., k', k;, E)
for production of a #* of momentum k and a 7~ of momentum k' inn p
collisions. That is the probability of finding a n* or momentum k’ and a7~
of momentum k' in ranges d*k and d3k’ in the final state, per collision, is
P d3k d3k'/k,k,. This is an inclusive experiment in the Feynman terminology.
For fixed and large E. one holds k, k', and k; fixed, with k, and k' of order
300 MeV and k., ~ E (say k, = 2E/3). P is then measured as a function of k..
In other words one looks at a fast forward n~ of fixed momentum, while
varying the longitudinal momentum of the 7", One wants a wide range of
k,, say from 500 MeV up to the beam momentum. Along with P, one should
also measure p(k,, k., E) and p(k\, k., E) for use in the analysis discussed
below.

If one uses the naive analogy to a gas then what
data is to compute the two particle correlation function gk, k., K\ k, E):

glk,, k. ki ki, E) = Plky, ke, K, K B) = plky ke, B) plki k2 E) - (21)

What is interesting is to see if this correlation function exhibits a correlation
length, i.e. see if it goes to zero as k, becomes small compared to k. and E.
This is the first thing to investigate with the data. However, according to the
theory of this paper it is the multiperipheral correlation function g, (instead
of g) that should have a correlation length. If g does not go to zero when k,
is small compared to k, and E, then it is worth looking for a correlation
length in multiperipheral processes alone.

For k_ in the intermediate range (300 MeV < k. < E), both Pand p(k . k,, E)
should be free of diffractive contributions and hence differ only in normaliza-
tion from P,, and p,, Hence, if g, shows a correlation length, one should
have

ne g
P2 P LU S et

Pk ko Ky ke E)ptk s ke E) o Pyfpa = Pk’ k. E) (22)

There is no independent way to measure py(k', k. E), s0 the content of this
equation is that P/p should be independent of . when k, is in the intermediate
range. This suggests that one look for a correlation length by seeing if
P/p does approach a constant for k, < E. If so, the way to obtain a correla-
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tion length is to fit the departure of P/p from the constant to an exponential
in the gas variable z, or else find the value of ¢ = |z — 2| above which P/p
is constant.

It is quite possible that P/p will be constant for k_ in the intermediate
range, but depart from this constant when k_ is small and P and p again have
diffractive contributions.

For 25 GeV incident pions there is no intermediate range for k.. because
diffraction dissociation or isobar decays can produce plons at rest in the
centre-of-mass system. This will not be possible at NAL energies, unless
diffraction dissociation involves intermediate states of mass > 2 GeV
(cf. Franzini'®).

The main aim in choosing experimental parameters is to have an inter-
mediate range for k, not contaminated with diffraction dissociation products.
It is important for this reason not to let k, be much smaller than 300 MeV.
The reason for this is that the invariant mass squared of the =+ and 7, for
k, in the intermediate region, is

Sy = kik k.. (23)

If k7 is small then s, _ will be small even if the 7" is transverse in the centre
of mass (i.e. in the middle of the intermediate range). In practice one would
like s, _ > 4 GeV? or so when the n™ is transverse in the centre of mass. to
be well away from diffraction dissociation effects. One does not want to
increase k; much beyond 300 MeV because then one gets into the tail of the
transverse momentum distribution and out of the interesting region.!®

EXPERIMENT 7: TEST OF FACTORIZATION IN MULTIPERIPHERAL PROCESSES

In this experiment one measures P(k . k,, k. k., E) and ptk' . k.. E) for very
large fixed E in both np and pp collisions. The momentum k' refers to a
n* coming out at 90° in the centre of mass, its momentum is held fixed.
The momentum k refers to a =~ which is backwards in the lab system (as in

the previous factorization experiment). Define

Puexplks ko E) = Pk, k. K\, k., E)/p(k', k., E) (24)

The purpose of this experiment is to see whether p mexp)lK 1. k. E) is the same
for mp and pp collisions.

The only difference experimentally between this experiment and Experi-
ment 3 is that instead of measuring the backwards pion spectrum for all
collisions one is now measuring the backwards pion spectrum only for those
collisions which emit a transverse n* in the centre of mass as well as a back-
wards pion. In other words one is using the transverse pions as an event or
beam monitor. This excludes diffractive events according to our theoretical
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[

picture; both P and p should be proportional to Py, and p,, and the ratios
P/p should equal P,;/p,; Furthermore the 7* and =~ will be well separated
inzso Py(k,. k. k' k., E)should factor into py(k .. k.. E)pulk, k., E). Hence

e8]
one expects

pM(exp)(ki’ k,, E) ~ pudky. k.. E) (25)

Hence comparing p ek, k.. E) for mp and pp collisions is a test of factori-
zation for multiperipheral processes alone. As in Experiment 3 one should
make this test at several energies E so one can see whether violations of
factorization decrease as E increases.

These seven experiments constitute the experimental programme. If any
of these experiments agrees well with the prediction, the result will be interest-
ing whether or not one likes the diffractive plus multiperipheral picture of
multiple production. Every one of the predictions cited can be wrong and
it would be remarkable if they all were to be verified. If it turns out that
diffractive events are not distinguishable from multiperipheral events,
Experiment 7 may not be worth pursuing. There are many reasonable ways
to modify the experiments proposed here but I hope that such modifications
will be examined critically to determine if they achieve the objectives of these
experiments as clearly and as simply as the specific experiments cited here.
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APPENDIX. SHORT RANGE FORCES AND BOUNDED TRANSVERSE MOMENTUM

In the text the hypothesis of short range forces in the Feynman gas was used
without specifying it precisely. It was also pointed out that it is hard to recon-
cile the observed bounded transverse momentum of secondaries with one’s
intuitive picture of the Feynman gas if it has short range forces. The muliti-
peripheral model suggests a definition of short range forces from which
one predicts bounded transverse momenta: the purpose of this Appendix is
to describe this definition and show how it leads to bounded transverse
moinenta.

An intuitive picture of short range forces would be that the dependence of
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G,ry.¥5 ..., F,.$;.8,) on one of the r’s, say r,, would be affected only by

other r’s which are near r,. A quantitative way of saying this is that if one

changes r, to r} the exact value of r, does not matter if [r, — r,| is large,

O Ta 08080 _ 00T 1, 88) )
GulF 1Ty 00 81,8,)  O,(f, Ta oo . T, 8. S5)

in a limit in which [r, — r,| » oo while [r, — r}| and |r, — r,| are held
fixed. But this is not the prediction of the multiperipheral model. In the
muitiperipheral model one must first introduce a set of momentum transfer
variables. If k,,.... k, are the four-momenta of the secondaries. then one

defines 4, =p; — kl

4 = 4, — k,
. qn*izqnfz_knvizkn“pz (A2)
(see Fig. 3).
py
ki
a
K2
92
O——ts
I
|
i
qn—l
kn

P2 F16. 3. Multiperipheral chain.

In the model of multiple meson exchanges, the k; are the momenta of
secondaries in order of cmission from the multiperipheral chain (Fig. 3). If
one writes the cross section for emitting n secondaries as a function ¢,(q,. . . ..
q,_1 Py P,) of the n — 1 momentum transfers, then the multiperipheral cross
section factorizes into functions depending on neighbouring ¢, (i€. ¢, and
q,, 01 g, and g5, etc)). The principal source of this dependence on neighbouring
q’s is the kinematic restriction that (¢; — g;_,)* = m? where m;, is the mass of
the ith secondary; the propagators of the multiperipheral chain depend
only on a single g,. If the vertices of the chain are not point-like, they also
depend on neighbouring g,.
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The first generalization from the multiperipheral model is that the short
range force idea should be stated in terms of momentum transfers g; instead
of secondary momenta k, But there are still problems. The multiperipheral
mode! predicts a factorization in terms of an ordering of the ¢; rather than
in terms of separation of ¢; from g, That is, the dependence of g, on ¢; in
the multiperipheral model is independent of the values of ;. ¢;-». etC.
regardless of whether ¢, ,, or ¢,_, is close to g; or not, and dependent on
Gi+q even if (g, — q; +,)° is large. In summary the ¢,’s of the multiperipheral
model look more like a random walk distribution function than a gas distri-
bution with short range forces.

An analysis of the multiperipheral model shows that on the average the
g, tend to order themselves so that g,, > 4, ¢ and k,_ > k. ,; the highest
energy transfers occur at the end of the chain associated with the incident
particle, and the secondaries with the highest longitudinal momentum are
emitted near this end of the chair. Also the quantities (g, — ¢;- J-)2 tend to
increase as j increases, so on the average the factorization of the multi-
peripheral is similar to a short range force hypothesis. This suggests that the
way to generalize the multiperipheral model is as follows. First, one defines
an ordering of the secondary momenta, namely, they should be numbered
so that k,, = k,, > ... = k,,. (An alternative is to order in terms of the z
variables: z, > z, > z;...). Then one defines g,.....4q,-, by eqns (A.2).
Then one supposes that the dependence of o,(q,, .. g, Dy Py OB G, 18
determined only by those g, for which (¢q; — g,)* is small. Since s, = (q; — qj)2
is the total mass squared of the secondaries numbered i + 1 toj(orj + 1to
i if j < i), it is reasonable to suppose a dependence on s;; when s,; is 1n the
resonance region ; the crucial assumption is that there will be no appreciable
dependence on s;; when s,; is beyond the region of the principal resonances.

There is another part to any short-range force hypothesis, namely, the
dependence of 6,(qy. - . . . G, 1. P1- P2) ON ¢; Must not be changed if one changes
the total number of secondaries but leaves unchanged the g; near g, (in a gas
analogy this is saying the distribution function for particles in one region
cannot be changed if one adds or subtracts particles in a far-away region).
This is also true in the multiperipheral model and should be demanded for
any generalization from it. A quantitative statement of this requirement will
not be given.

As far as the properties of one and two particle spectra are concerned, a
short range force hypothesis in terms of the ¢, is as good as a short
range force hypothesis in terms of the k; ‘themselves. The reason
is that k, = ¢, — q,_, and ¢, and ¢,_, are close variables; if k, and &,
are well separated the variables g, and g,_, tend also to be well separated
from ¢; and g;_,, and as a result the particles of momentum k; and k; tend
to be uncorrelated. One also assumes uncorrelated dependence on p; or
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P2 and g;if (p, — q)* or (p, + q;)* is large ; this then leads to factorization
of the dependence of spectra on the secondary momenta k and the incident
momenta when the secondary is (in the gas analogy) well away from the walls.
These results can be shown in detail for the multiperipheral model itself
using the multiperipheral integral equation of Amati, Fubini, and Stanghel-
lini;* to show that scaling laws hold for a generalized short range force
picture quantitatively is more difficult but it seems reasonable that they
should still hold.

Finally, using the momentum transfer variables q; it is easy to bound the
transverse momenta of secondaries. All that is necessary is to bound the
momentum transfers ¢7. The reason that this bounds the transverse compo-
nents k;; of k; is the following. First, one shows that the 2-vector (g;,. ¢,.) is
spacelike (except possibly for i near 1 or n). The reason is simple. Consider
the two-vectors (pyo. pyoh (P20 P2). (kyor ki), .. (Kyo, k,.). These are all
timelike two-vectors, with masses HisHyymy ..., m . If the two-vector mo-
mentum transfer from p, to k, + ... + k, is timelike also it acts like a final
state particle in one of two ways : either in the sense of splitting p, into ¢, +
ki + ...+ k, or in splitting p, into —g, + kKivi+ ...+ k,. For the first
splitting to be possible the mass # of p; must exceed the sum of the masses
m; of k, ...k, but since m;, = m;, this sum usually exceeds #, (except for
special cases when i is small and the outgoing particles have lower rest masses
than the incident particle). Likewise it is unlikely for the sum of m’  from
J=1i+1toj=nto be less than #,. Hence (g,,,q,,) is spacelike. But this
means g7, < |¢}|, so if |¢?| is bounded then q;, is also; since k, = g, — ¢
k?, is bounded also. ,

This argument breaks down if the incident particles have large perpendicu-
lar momenta, for then the two-vectors (P1o- P12) and (p,, p,.) have masses
#y, and p,, which are large and it is quite easy for (g, g;,) to be timelike.
In summary, all links of the multiperipheral chain and its generalizations
know the direction of the momentum of the incident particle; however the
magnitude of this momentum is forgotten through a random walk effect as
one goes many links away from the incident particle.
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The function o, has been normalized in such a way that no factors of 27 occur 1n

(11Y. aleny tha cide cla ad to ke
eqn (11, aiso the mcicgent par ticie 1s assumed to be 1u51u_y relativistic so the

velocity factor is a constant and included in the normalization.

As noted earlier, the trouble with looking at small cross-sections is that they may
be affected by small effects which are negligible in large cross-sections.

It is hard to understand, given the hypothesis of “‘short range forces,” how
p(r, 8,, 8,) can depend even on k.. This problem arises because the separation
of k, into k, and k, is defined in terms of the direction of the momentum of the
incident particle, whereas the hypothesis of short range forces suggests that the
density at r should be independent of the momentum of the incident particle.
The resolution of this problem is that the definition of “‘short range forces” that
is suggested by the multiperipheral model has some subtle features that permit
p(r, s, s,) to depend on the directions but not the magnitudes of p, and p,. This
is explained in the Appendix.
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